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Abstract-An analysis is presented for the solution of the inverse radiation problem using a Monte Carlo 
technique. For inhomogeneous planar media, the profile of the single scattering albedo is obtained from 
the inverse analysis. For homogeneous, anisotropically scattering media, the single scattering albedo and 
the asymmetry factor are recovered. A step phase function approximation is used to account for the 
anisotropic scattering in the medium. The confidence bounds on the estimated parameters for errors in 
the input data are evaluated. The results show that the medium properties can be recovered with high 
accuracy even if there is up to 10% error in the input data. The primary advantage of the Monte Carlo 
method is that a single direct solution yields the coefficients of a multivariate polynomial for each set of 
observation data, which are then used to obtain the medium properties by a non-linear least-square 

minimization technique. 

INTRODUCTION 

RADIATION is the predominant mode of heat transfer 
in high temperature applications such as industrial 
furnaces, boilers, gas turbine combustors, as well as 
in fires. The distribution of radiative heat flux and 
its divergence are required for thermal modeling of 
these systems. They are obtained from the solution 
of the radiative transfer equation (RTE) for a given 
geometry, set of boundary conditions and radiative 
properties of the combustion products, i.e. particles 
and gases [ 11. 

Radiative properties of particles can be theor- 
etically determined using physical input parameters 
such as the wavelength of the incident radiation, the 
complex refractive index, the shape, size, and volume 
fraction distribution of the particles in the system. The 
shape of the particles is usually irregular and random ; 
therefore, it is necessary to assume an average, smooth 
shape, such as a sphere, to determine particle proper- 
ties theoretically. The complex index of refraction, 
on the other hand, is a function of the wavelength 
of the incident radiation and physical and chemical 
properties of the material. It cannot be measured 
directly and it is required only to theoretically deter- 
mine the radiative properties of particles. For these 
reasons, it is preferable to determine the relevant radi- 
ative properties from experiments in situ. This can be 
accomplished by combining optical diagnostic tech- 
niques with inverse analyses of the radiative transfer 
problem. Here only one set of experimental errors will 
be involved, and the properties so obtained will be 
particular to the system under consideration. Our goal 

in this study is to develop a versatile technique for 
inverse radiation analyses in planar systems. 

The radiative transjbr equation 

The RTE considered in this work is for azimuthally 
symmetric plane parallel media and is written as [2,3] 

X s P,(P’)~LP’) d/J. (1) 
-I 

The boundary conditions required for the direct and 
inverse solution are the incident intensity distribu- 
tions at the two faces of the plane parallel medium. 
For all of the cases considered here, the boundaries 
are assumed nonreflecting, with Z(O,p) = 1 and 
I(z,, - 11) = 0 for 0 < p < 1. Definitions of all the par- 
ameters used are given in the Nomenclature. It should 
be noted that all radiative properties are wavelength 
dependent, although this dependency is not shown 
explicitly in the relations. 

The RTE, equation (I), is solved to obtain the radi- 
ation intensity distribution in the medium. Although 
several techniques are available for the solution of 
the RTE [l-6], there is no universally accepted RTE 
model which can be used for all types of problems. 
Among all these models, the statistical Monte Carlo 
technique appears to be the most versatile approach. 
With increasing availability of high-speed computers, 
this technique is expected to gain even more recog- 
nition [ 1,6]. 
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NOMENCLATURE 

coefficients of the phase function 
expansion 
minimization quantities 
error vector 
mathematical expectation 
probability density function, PDF 
cumulative probability distribution 

function, CDF 
asymmetry factor 

step function peak 
Heaviside or step function 
radiation intensities 
number of scatters scored per history 

number of observations 
number of coefficients of the phase 
function expansion 
number of inverted parameters 
number of scatters used in computations 
number of histories 
probability 
fluxes 
minimization weight factor 
exponential constant 
Monte Carlo weights 
physical distance. 

Greek symbols 

; 

error estimates 
extinction coefficient 

) discrete central value 
6 Dirac-delta function 
0 polar angle 
0 angle between incident and scattered 

radiation 

inversion parameter 
wavelength 
polar direction cosine 

maximum number of scatters before 
escape 
pseudo-random number 
standard deviation 

optical thickness 
scattered direction cosine 
biasing probability fraction 
azimuthal angle 

azimuthal angle 
scattering phase function 
single scattering albedo 

solid angle of propagation. 

Subscripts 
b biasing 
C minimization 
d detector 
f last flight estimation 
i, ,j, k summation or array index 

S sampling 
t total 
X importance. 

Superscripts 
computed statistical estimate 
averaged statistical estimate 
correct statistical estimate 
quantities with experimental error 
incident direction 
approximated quantity. 

In Monte Carlo techniques, a finite number of 
photons which obey the physical restraints of the RTE 
are considered. Their initial directions, scattering 
angles and the distances between each consecutive 
scatter are computed using pseudo-random number 
generators. Since a physical modelling of the RTE is 
used, this approach can be readily applied to diverse 
geometries and easily accounts for medium inhomo- 

geneity and anisotropy. However, since it is a stat- 
istical estimation technique, the solutions, while con- 
verging to the ‘exact’ results for a large number of 
statistical samples, will always have some error. It is 
therefore left to the user’s discretion, computational 
power, and felicity to obtain the desired accuracy. 
This method has long been used in the solution of 
radiative transfer [2,5] and neutron transport prob- 
lems [5,7]. A more complete review of Monte Carlo 
methods and the various error reduction techniques 
used therein are given in refs. [5, 8, 91. 

Whereas in a direct solution of the RTE, the 

medium properties and the boundary conditions are 
used to obtain the radiation intensities and fluxes 
within and leaving the medium, in the inverse problem 
one or more of the medium properties are determined 
using the measured exit fluxes and intensities. Earlier 
investigators have considered inverse radiation prob- 
lems where isotropic radiation is incident on plane 
parallel, homogeneous, isotropically scattering [ 1 O- 
121, as well as anisotropically scattering [ 13-241 media. 
Only a few investigators have considered inhomo- 
geneities in the medium [25,26]. In another group of 
inverse problems, measurements within the medium 
have been employed to obtain the similarity par- 
ameter, which combines the asymmetry factor and 
the single scattering albedo into one unknown [27- 
301. Reviews of these inverse solution techniques are 
available in the literature [31-331. 

Inverse problems other than simple one-dimen- 
sional systems have not received much attention in 
the past and only a few studies have appeared in the 
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literature [34-361. The main reason for this is two- 
fold: first, there is a lack of efficient direct solution 
methods for multidimensional, inhomogeneous, and 
anisotropically scattering media, which yield accurate 
radiative intensity distributions and can be employed 
in iterative or least-square minimization based inver- 
sion schemes, and second. it is very difficult to develop 
inverse solution algorithms for general geometries 
which do not require the solution of the direct prob- 
lem. Monte Carlo techniques appear to be the only 
viable approach to solve the direct and inverse radi- 
ation problem in complicated geometries. 

In this paper, we introduce a Monte Carlo solution 
technique for the inverse radiation problem for 
inhomogeneous and anisotropically scattering planar 
media. A functional form of the single scattering 
albedo is considered for inhomogeneous media. For 
the case of anisotropic scattering, a new step phase 
function approximation is employed to evaluate the 
asymmetry factor of a homogeneous, anisotropically 
scattering system. 

It is worth noting that here we will assume the 
medium optical thickness is known. Therefore, the 
technique, as presented here, can only be used for the 
solution of a practical problem, if the optical path 
length is measured from independent experiments. 
However, it may be possible to use this methodology 
in an iterative algorithm to predict the optical thick- 
ness ; this will be considered in a separate study. 

MONTE CARLO SIMULATION 

A detailed outline of the developed Monte Carlo 
method of solution for the direct and inverse problems 
is described in refs. [37,38]. Here, we will present only 
a summary of the method. First, we will explain the 
statistical sampling procedures. Then the direct and 
inverse solution of the radiation problem with the 
importance sampling technique will be discussed. 

Statistical sampling 

Monte Carlo simulation involves the random sam- 
pling of the independent parameters of equation (1) 
i.e. the incident and scattering angles p and $, and 
the scattering distances y or T, using the corresponding 
probability density functions (PDFs). If we define 
P{a < 5 < b} as the probability that 5 takes a value 
between a and b, then the PDF is defined as that 
functionf([) which yields the probability of 5 taking 
a value between 5 and <+A( asf(i in the limit as 
At -+ 0. Then 

A cumulative probability distribution function (CDF) 
F(x) yields the probability P{t < x}, and is defined 
as 

I 

F(s) = s __fWC. (3) 

A uniformly distributed random variable is one the 
PDF of which is such that the probability of 5 taking 
a value between 5 and <+dc is dl. Using pseudo- 
random number generators, we usually obtain a uni- 
formly distributed random variable 5 between 0 and 
1. We can use the CDF to generate X. the random 
variable that we wish to sample, as .Y = F.- ‘(5). 

For obtaining 5. we can use six different pseudo- 
random number generation options from IMSL [39], 
depending on how ‘random’ we would like 5 to be. 
Three multipliers are used in this generation ; options 
1 and 2 use 16 807 as the multiplier, 3 and 4 use 
397 204094, and 5 and 6 use 950 706 376. In addition, 
options 2, 4, and 6 employ an additional shuffling 
process which involves generation of a table of 128 
random numbers, shuffling them. and selecting ran- 
domly from this table. Option 1 was the simplest and 
computationally the fastest, while option 6 was more 
‘random’ and takes the longest time for generation. 
In our preliminary computations, we considered all 
these options ; the results reported in this paper were 
generated using option 1 [37]. 

Direct Monte Carlo solution 

For a given source of photons, the initial direction 
can be sampled from either the intensity [F,(p)] or the 
flux [FF(p)] distribution. For each photon history, a 
sampling weight, W, = ,B~, is used for every score for 
the fluxes when sampling from a unit intensity dis- 
tribution, and IV, = l/2 when sampling from a unit 
flux density distribution. The history weight is the 
product of the initial sampling weight W, and scat- 
tering probability w (i.e. the single scattering albedo) 
at every scatter. Here, a history is defined as one 
complete random sequence which yields an estimate 
for the statistical quantities to be evaluated, and a run 
comprises of N such histories. 

The probability of the photon penetrating to a dis- 
tance _r is e-“V. where fi is the extinction coefficient 
and y the physical distance travelled by the photon. 
This yields the CDF for the scattering distance as 
F(y) = 1 -emB’ = <. from which the collision distance 
y is evaluated as y = -In t/b. Thus, we must know 8, 
the extinction coefficient. to perform the direct Monte 
Carlo simulation. In the analysis presented here, we 
assume b is known. 

Ordinarily, scoring for the exit fluxes is done when 
the photon exits the medium. It is preferable to score 
for all photons scattered in the medium to reduce 
variance in the results, since there will be more scores 
for each history. This can be accomplished by stretch- 
ing each flight path and simulating escape before each 
scatter. This is called last flight estimation (LFE). The 
probability of such an escape is 

fe-~cr”~i,l:P, ifu. >O 
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FIG. 1. The last flight estimation for a photon with three 
scatters before escape. LFE extensions shown as the dashed 

lines. 

for the ith scatter. Here W,- is denoted as the LFE 
weight. In Fig. 1, we show these extensions before 
each scatter by the dashed lines, and indicate the LFE 
distances z, and direction cosines cc, [37]. 

For scattered intensities, a LFE weight Wr simifar 
to equation (4) is obtained by replacing pi with/c,, the 
direction cosine of the detector angle. The intensities 
are scored by the product of the history weight Cy, 
and WF. Here W; = it,,/&, when sampling from the 
unit intensity distribution and 1/4/b when sampling 
from the unit flux distribution. Also, the direct trans- 
mitted intensity e -‘gl/l*d should be included in the 
weight for the entire direct run (not for each history). 
At each scatter point, the cumulative history weight 
is further muItiplied by w, the single scattering albedo. 
which may be a function of the optical thickness. 

The photon direction after interaction is sampled 
next, for which the CDF is written as 

F(B) = @(cos 0’) sin 0’ dH’ 

l.r 
1 

@(cos 0’) sin 0’ d0’ 
” 1 

(5) 

where cD(cos 0’) is the Legendre polynomial expan- 
sion of the scattering phase function as in equation 
(I). For isotropic scattering, @(cos 8’) = I and this 
yields F(O) = (1 -cos 0)/2 = t which is used to com- 
pute pct( = cos B), after < is obtained from a random 
number generator. Using this value af ct. the back- 
scattered or transmitted Aux densities are scored using 
the LFE, and the optical distance to the next scatter 
point is computed. If this point lies outside the 
medium, the history is terminated without any further 
scoring. Otherwise, the intensities are scored, the next 
scatter angle is sampled. and the history continued 
until the photon escapes, or until the maximum 
number of scatters is reached. For purposes of com- 
putation, we limit the total numbers of scatters for 
each history to n. 

Irtoerse Monte Carlo so~utja~l 
Inverse solution techniques, such as those given in 

refs. [Il. 12, 16, 21 . 23-261. involve iterative con- 

vergence using several direct solutions of the radiative 
transfer equation, The iterations are terminated when 
the direct solution results using the ‘converged’ prop- 
erty values are acceptably close to the ‘measured’ 
intensity or flux values. However, using a Monte 
Carlo technique with the concept ofin~portance sam- 
pling requires only a single direct Monte Carlo simu- 
lation. Using importance sampling, the unkno~~n 
probability density function (PDF) is replaced by a 
known PDF during the simulation. and the unkno~7n 
PDF appears as a multiplicative weighting function 
which is to be evaluated. 

Historically. the concept of importance sampling 
arose from the need to reduce the statistical un- 
certainty in the direct Monte Carlo estimates [5,8]. 
The name stems from the fact that, in order to reduce 
the variance. the random sampiing should yield more 
samples from the more important parts of the sam- 
pling region [5.37]. The use of this concept offers 
the primary advantage of the inverse Monte Carlo 
method over other inverse methods that use iterative 
convergence, such as those developed in refs. [l?, 24, 
26]. because the unknown parameters are not used in 
the direct solution. 

For the case of isotropic scattering, an estimate 
for the backscattered and transmitted fluxes can be 
obtained of the form 

= ; f w, (6) 
i 1 

where N is the total number of histories (or incident 
photons) and W, the total increment of the scored 
quantities for each history given as 

w, = w, % w,,,co;). (7) 
i- I 

Here, the quantities within the summation sign are 
the LFE weights, and .I, a variable number. When 
scoring for the fluxes, J,,O is the number of scatters in 
the ith history where the scattered angle p, < 0, and 
J,.I is the number of scatters in the ith history where 
the scattered angle [ii > 0. When scoring for the inten- 
sities Ji = N. Also, T, is the optical depth at which the 
jth scatter occurs, and v, the actual total number of 
scatters for each value of,j. 

A similar equation for the case of constant single 
scatter albedo was given by Dunn [I I], where he 
assumed that the total number of scatters, n. is the 
same as the total interactions with scattering in either 
direction, JJ, for every source photon. While this is 
true when scoring for the intensities, it is not correct 
when scoring for the fluxes, since J,,“+f,., < ft. 
Scoring for the intensities can also be performed dur- 
ing the direct sinlulation using this concept, with the 
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fluxes replaced by the intensities in equation (6) and 
using the corresponding weights W, and W, for the 
particular angle of interest. 

For equation (6), and knowing W, and W, in equa- 
tion (7) we obtain an estimate for the backscattered 
and transmitted fluxes of the form 

Q(O) = b,o,fb,w;+b,w;+... +h,,w’,, 

V<ll 

Y d 11 (9 

where v is the maximum number of scatters before 
escape. Note that the h-coefficients of&(O) and &r,) 
in equation (8) are not the same. Because these 
coefficients are determined following the same pro- 
cedures, we preferred to refer to them with a single 
parameter to facilitate the discussion in the rest of 
the paper. These polynomials have all coefficients 
positive, which means that their value is mono- 
tonically increasing with Q. Therefore, there is only 
one single positive root which wiii satisfy equation (8) 
and it is found by either a simple iterative procedure. 
or using non-linear regression routines [39]. 

The coefficients b, in equation (8) can be used with 
several sets of experimental observations for the same 
set of unknowns, without having to solve the direct 
problem again. Also, if the value of the sampling 
parameters such as ro, W,, are the same, the coeffi- 
cients hi can be used with the observed values of fluxes 
for different media with different, but constant, w. 
Thus one direct run of the Monte Carlo method 
can be used repeatedly for several inverse solutions. 

The least squares minimization routines minimize 
the quantity 

(9) 

Here A, is either the flux (see equation (8)) or intensity 
value input, 2, its direct estimate using the current 
values of the unknowns, K the total number of obser- 
vations of fluxes and intensities, and Wc,k the mini- 
mization weights to account for the magnitudes of the 
different observations Al,, usually set as 

W,,k = A; (lo) 

where T is some fraction. Unless otherwise mentioned, 
we set r = 0, which yields WC, = 1 for all the obser- 
vations. This choice results in a minimization of the 
differences, which is preferable when we would like to 
ignore the effect of possibly larger percentage errors in 
the intensities/~uxes of smaller magnitude. For cases 
where importance is to be given to all observations, 
however small they may be, r = 0.25 or 0.5 yields 
more efficient convergence. 

The Levenberg-Marquardt algorithm was used in 
the least squares minimization routine [39]. In this 

minimization technique, a trust region approach was 
employed, as discussed by Dennis and Schnabel [40], 
which yields an increment for the unknown variables 
during each iteration. This increment is given as 

A& = [~t~+~[l]]-‘~~~ (11) 

where R is the Jacobian containing the partial deriva- 
tives of the minimization quantity for each obser- 
vation with respect to the vector of variables, p the 
Lcvenberg-Marquardt parameter, (I] the identity 
matrix, A& the column vector of the increments to 
the vector of variables A for the ith iteration, and e 
the column vector of the current minimization quan- 
tity for each observation as given in equation (9) with- 
out squaring, namely 

ek = (.& -A, )I W,,k. (13 

With p = 0 and e as the vector of the differences 
between the final direct estimates and the observed 
values, equation (11) yields the vector of errors in 
the inverted quantities. In the bounded least squares 
approach to evaluate the values of the variable within 
specified bounds, an additional active set strategy pro- 
posed by Gill and Murray 1411 was employed. 

The details of the variance and confidence bounds 
we consider here are discussed in refs. [37,38], and 
they are similar to those given in refs. [12,26]. The 
only difference is that, in addition to the errors in the 
measured quantities A, which are the observed values 
to be used in the inverse method, we will have the 
standard deviation of the direct Monte Carlo simu- 
lation. Then, the total standard deviation of d to be 
used to compute the standard deviation for the inverse 
solution can be written as 

a,(R) = [,,‘(_&+o&(;i)]“‘. (13) 

A direct analytical solution is performed to eliminate 
~(2) in equation (13). Here only the experimental 
errors contribute to the inverse solution, as in the 
inverse solutions of Ho and ijzigik [l2,26]. In a Monte 
Carlo simulation, however. the e(a) contribution 
could be significant. 

The upper bounds for the errors can be evaluated 
approximately by using the similarity ofequation (11) 
to linear models theory [42], as 

[o’(fi)] = n2(A”)-diag [R’(h)R(A)Jm (14) 

where a(J) is a scalar quantity which we set as the 
maximum value of the errors in the observations, and 
A the vector of inverse estimates, as in equation (1 I). 

ISOTROPICALLY SCATTERING 

INHOMOGENEOUS MEDIA 

The details of the analysis for dete~ining the single 
scattering albedo in plane parallel, isotropically scat- 
tering media are discussed in ref. [37] for a single 
homogeneous layer, inhomogeneous half space, and 
two homogeneous layers. Since these are similar to 
the problems solved by Dunn [I 1.251, we will not 
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discuss them here. Instead, we will focus on a single 
inhomogeneous layer with exponential varying single 
scattering albedo. The exact solution of this problem 
with the F.v method is given in ref. [43] for both 
isotropic and collimated incident flux boundary 
conditions. 

The slab single scattering albedo is assumed to have 
a functional form as 01~~ eeT”. where r is the optical 
thickness and tr), and s are constants to be evaluated 
in the inverse problem (M = 2). As the value of s 
increases, the slab approaches a homogeneous single 
layer. Dunn [25] solved this problem assuming the slab 
to be composed of five layers with constant albedo in 
each layer. He considered the case where the total 
optical thickness 5,) is 5. and s = 1, con = 1. 

First, we attempted to simulate the results reported 
by Dunn [25]. The discrete values of the single scat- 
tering albedo were used in each of the five discrete 
layers as given in ref. 1251 to obtain the Monte Carlo 
direct estimates for the exit fluxes and intensities. 
These results were compared against those of the F9 
method. The backscattered flux and intensity values 
obtained this way were different in the second sig- 
nificant digit, whereas the transmitted flux values 
differed in the first digit. To ensure that we did not 
make any error in calculation, we also obtained the 
discrete ordinate results [44] for the five layer approxi- 
mation using the albedo values given in ref. [25]. These 
results were in very close agreement with our direct 
Monte Carlo results. but not with the input Fy results 
used by Dunn [25] to obtain the w profile from inverse 
calculations. This suggests that there may be a numeri- 
cal error in the inverse results given in ref. [25]. Using 
our Monte Carlo technique and the Fzv results, we 
obtained the discrete values of (0 as 0.778,0.001,0.001. 
0.001. 0.087, whereas Dunn reported values of 0.74, 
0.27, 0.10, 0.037, 0.014. The bounds used in our cal- 
culations were 0.001 < (u < 1.0, and we used the two 
fluxes and three intensity values for inversion. 

We also tried other methods of obtaining the vari- 
ation of the albedo. First. we used an exponential 
function for ~1). By taking x = e ’ ‘. we scored with 
(0& for every scatter using importance sampling. We 
then obtained an expression in the unknowns LI>~, and 
ti. which we solved using a least squares technique. 
Since t appeared in the exponent and an infinite 
number of T values were possible in sampling, it was 
necessary to discretize the possible values to a finite 
number. 

For the rth scatter, the importance sampling weight 
is 

where 0 < r, < r0 to be different in each history. If 
we restrict the direct simulation to II scatters, the 
maximum value of the exponent will be ~zr(). We div- 
ided this maximum into nt discrete divisions, each of 
which had a central vafue y,. Then, using equations 
(6), (8), and (I 5). we obtained the following equations : 

z.& = i f b,,, k= 1,2,....K (16) 
,=” I=- I 

where 

(17) 

The observations used were Q(O), Q(I), I(zU,0.5), 

Z(0, -0.5). and Z(0, - 1). Therefore, the total number 
of observations. K, was 5. Here J is the number of 
histories where, for the \rth scatter, c:‘=, z, is within 
the corresponding discretized element of which 7, is 
the central value, and /.L? is in the corresponding exit 
direction when scoring for the fluxes. When scoring 
for intensities, J = N, since scoring is done at every 
scatter. Again, values of Wf are the last flight esti- 
mation weights. 

After obtaining the coefficients bEi of equation (8) 
for the five observations, we used bounded and 
unbounded least squares procedures [39] to obtain the 
values of w0 and K. For this case, we used a value of 
r = 0.25 in equation (IO) for the minimization 
weights, to have convergence with fewer iterations. 
The errors in the inverted quantities, calculated using 
equation (11) with p = 0, were always seen to be in 
agreement with the actual errors. The results of these 
computations are given in Table 1. For cases II and 
III, the vector e used in equation (11) was obtained 
from the error in the observations only and yielded 
the change from the converged results of case I. 

In experimental observations, it is probable that the 
readings of smaller magnitude have greater scope for 
error. With this in mind, we considered random errors 
within +2, 10, 20, 2. 2% respectively, for the five 
observations and performed inverse runs with 20 such 
sets of errors, with I’ = 0.25 (see Fig. 2). In order 
to calculate the upper bounds, we took a(A) as the 
maximum value in the vector r. Using this, we cal- 
culated the bounds as kO.123 and kO.149 for 3,, and 
R, respectively. With r = 0, these bounds were & 0.137 
and & 0.168. Figure 2 shows that the converged results 
are well within the predicted bounds and the 
maximum value of (.rjO corresponds to the minimum 
value of K, and vice versa. Two single scattering albedo 
profiles based on these converged results (worst cases) 
are plotted against the exact functional expression for 
(D in Fig. 3. The agreement between the exact and 
recovered profiles is satisfactory. 

We also considered the case of collimated radiation 
incident on one boundary at other than the normal 
direction. All the medium properties were the same as 
for the case of isotropic incidence, and the FN direct 
results were obtained from ref. [43]. The only differ- 
ence in the direct method was that the incident direc- 
tion cosine /in = 0.9 was considered for all the his- 
tories. The sampling weights IV, used were n0 and 
~1~,i2~~ for the fluxes and intensities respectively, when 
sampling for photons with unit flux density normal 
to the face. We considered random errors the same as 
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Table 1. Inverse Monte Carlo results. With o = w& (exact values for o,, = 1 .O, 
K = 0.368) 40 000 histories and six scatters for the direct simulation 

Error 

Unbounded convergence Bounded? 

all R ai(G) a(R) 00 R 

I 1.005 0.372 0.0048 0.0039 1.000 0.379 
II 1.017 0.371 0.0126 -0.0010 1.000 0.396 
III 1.030 0.370 0.0249 -0.0019 1 .OOo 0.413 

I, No experimental error, [e] = exact-direct Monte Carlo. 
II. 2% experimental error, [e] = observed-exact. 
III. 4% experimental error, [e] = observed-exact. 
t The bounds are 0.001 < (5,, f < 1.0. 

before, and obtained results very similar to those 
given in Fig. 2. 

It is possible to consider a linear function approxi- 
mation to the exponentially decaying single scattering 
albedo o = w0 eerL’, ifs N 10 or greater, because then 
the profile approaches a linear one. Thus, assuming 
that w = w , + c+z , and using importance sampling, 
we solved the direct problem and found these 
coefficients from the inverse solution. The equations 
for the observations are obtained in the form 

(18) 

where 

The direct solution for this case takes considerably 
longer CPU time since a greater number of scatters 
(n = 20 when s = 10 and n = 40 when s = 100) are 

‘I 

+ 
1 20 

Run number 

FIG. 2. Inverse results using exponential single scattering 
albedo profile. Isotropic incident radiation on single inhomo- 
geneous slab. The exact values are r0 = 5.0, o0 = 1.0, and 
K = 0.368. Converged values without error are o,, = 1.005, 
K = 0.372. The upper bounds are kO.123 for &. and kO.149 

for B. 

needed with the same number of histories, and an 
additional computational loop is to be performed for 
each score to account for the product within the sum- 
mation sign in equation (19). For the case of s = 10, 
with 20000 scatters, the CPU time required for 
the direct solution was 14.5 CPU seconds using 
the IBM 3090-300 supercomputer at the University of 
Kentucky. The bounds which were calculated for 6, 
and G2 using the maximum value in e were f 0.0089, 
+0.0107, respectively. The single scatter albedo pro- 
files obtained from the worst results are compared 
against the exact functional form for w in Fig. 4. 

ANISOTROPICALLY SCA-ITERING MEDIA 

In this section, we discuss the inverse problem for 
anisotropically scattering, plane parallel media. The 
use of the scattering phase function of order L as in 
equation (1) in the inverse solution would involve 
determination of the L a, coefficients. Therefore, we 
need an approximation to the phase function that 
yields acceptably accurate direct results and minimizes 
the number of unknowns to be evaluated. 

L2 

LO 

0.5 

3 0.6 

0.4 

0.2 

0.0 

1 

;1 
0 1 2 3 4 5 

T 

FIG. 3. Comparison of inverse solution results with exact 
w-profile. Single layer with w = w,, e-“‘, with s = 1. Dashed 

lines represent the worst inverse so!ution results. 
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FIG. 4. Comparison of inverse solution results with exact 
w-profile. Single layer with w = w0 em’ ‘. with s = 10. Dashed 

lines represent the worst inverse solution results. 

Phase function approximation and analysis 
An indication of the behavior of the scattering 

phase function for spherical particles can be obtained 

from the size parameter, .Y, which is defined as &/A, 
where d is the scattering particle diameter and i. the 
wavelength of the incident radiation. As the size par- 
ameter increases, the particles scatter increasingly in 
the forward direction, whereas the phase function 
values in other directions remain, for the most part, 
within the same order of magnitude. Phase function 
approximations should be capable of representing 
such functions with a fewer number of parameters. 

In a recent paper [45] a step function approximation 
for the scattering phase function was outlined, and a 
solution scheme to recover the first few coefficients 
of the full phase function from experiments was 
discussed. This approximation is necessary for the 
Monte Carlo simulation in order to have a simple 
form of the phase function which approximates the 
scattering pattern and yields the same mean cosine of 

the scattering angle as the original phase function. 
It is worth noting that Dirac-delta phase function 
approximations are unsuitable for the Monte Carlo 

solutions. The delta functions. by definition, possess 
infinite value at 0 = 0 and cannot be used in any 
physical sense. 

The simplest step phase function approximation is 
the step-isotropic (SI) phase function, which is written 
as [45] 

6(,) = ZhH(p-/c,)+jl -h(l-,4,);. (20) 

Here p, = cos A.H , , where A@, is the small angle over 
which the step is defined, and H(p - p ,) is the step or 
Heaviside function which has value 1 when p > p, 
and 0 for all other values of p. The superscript (“) is 

used to denote the approximated phase function or 
quantity. 

As elucidated by Pomraning [46]. the best strategy 

for determining the coefficients of a lower order 

approximation is to satisfy the lower order moments 
of the phase function. The phase function given by 
equation (20) satisfies the zeroth moment. To obtain 
h, we satisfy the first moment 

‘which yields 

17 = 2a,/[3( 1 -pLf)] (21) 

for a given IL,. Here a, is the first coefficient of the full 
phase function 

W.4 = C a,,P,(d 
,2= 0 

(22) 

where P,, is the orthogonal Legendre polynomial of 

order n. The first moment of the phase function yields 
the mean cosine of the scattering angle or the asym- 
metry factor, which is also satisfied by the step func- 
tion approximation. 

The step function approximation given by equation 

(20) yields a reasonable physical approximation to the 
true phase function. However, when a, > 1.5( I+ p,), 
the second term on the right-hand side of equation 
(20) has a negative value, which is not physically per- 
missible, although the results of the direct simulation 
may converge to the exact results for larger optical 
thicknesses and increased number of scatters. In such 
a case, a larger value of p, is required to ensure that 

the second term is always positive. This corresponds 
to a narrower angular step. 

The use of the second moment of the phase function 

yields a step-Eddington (SE) approximation 

&i(p) = 2IIH(~-~,)+{l-h(1 -p,):(l+n,p) (23) 

which is a modified linearly anisotropic phase func- 
tion. Here h and 8, are given by 

ci, = [a, -3h(l -~;)/2]/[1 -h(l -p,)] (24) 

h = 3a,/[5p, (1 -p;‘)]. (25) 

The results reported in this paper were obtained 

employing the SI phase function. Written in its azi- 
muthally-dependent form, equation (20) is expressed 
as 

&(cos 0) = ZhH(cos 0 -cos A@, ) 

+(I-h(l-cosA@,)} (26) 

where cos A@, = p ,. and 0 is the scattering angle in 
the relation 

cos 0 = &+(I -$)‘,Z(l -$Z)‘J2 cos ($-4’). 

(27) 

Here /J’ and p are the incident and scattered direction 
cosines, and 4’, 4 are the incident and scattered azi- 
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muthal angles, all sampled with reference to a fixed 
coordinate system. For isotropic scattering, we can 

sample for the azimuthal angle as 

4 = n(25- 1) (28) 

in the range - rc to 7~ [8]. Thus we evaluate cos 0 from 
equation (27). and multiply the history weight with 
the probability of scatter, depending on whether cos 0 
is smaller or greater than p,. This probability is 

[I +h( 1 +p ,)I for scattering in the step range of the 
phase function. or [ 1 -h( 1 - p,)] for the other angles. 
This quantity, multiplied by w. will be the importance 
sampling weight. 

In the direct Monte Carlo simulation for the inverse 

solution, we used the concept of importance sampling 
to remove the unknowns in the anisotropically scat- 
tering phase function. In effect, we sampled for the 
scattered direction from an isotropically scattering 
PDF. and weight by the appropriate unknown, 

depending on whether the scattering is in the step or 
isotropic portion of the phase function. For /J, z 1, 
this procedure yielded few particles scattered in the 
forward direction, since we sampled for p from an 

isotropic scattering distribution. In order to have a 
good statistical representation of the forward scat- 
tering, we needed to force more particles to scatter in 
the forward step region, which is called biasing. 

The solution of equation (27) for p, when 4 = 4’ 
and cos 0 = cos A@, = p,, is 

~=~‘~,I((1+~“:~‘?--~--“)‘.I’. (29) 

This equation yields different values for the step scat- 
tering limits of p, for different values of the incident 

angle $, which does not facilitate biasing, as we do 
not have a fixed value of the step scattering range of 
the phase function. Also, the azimuthal angle range is 
correspondingly different for different values of the 
incident direction cosine. The only way we can keep 
the polar direction cosine and the azimuthal angle 

range for the step scattering constant is to sample for 
the scattered direction cosine, u, and the azimuthal 
angle of scattering, q, with reference to the incident 
direction cosine $, at every location, and use these to 

get the global physical direction cosine as [8] 

p = $u-(l-$2)“2(1-,2)‘;2 cos q. (30) 

If u < p,, the step scattering holds for all cp, as illus- 
trated in Fig. 5. We observe here that it is necessary 
to sample for cp, to obtain p using equation (30). for 
every scatter. The method for the biasing of scatter in 
the step direction is outlined next. 

We know from the CDF for isotropic scatter 
[F(U) = (l-p)/21 that the probability of scatter in the 

step range is 

P{p, < p < 1) = (1 -IL,)/2. (31) 

Now, if we want this probability as T, the steps to be 

taken are : 

(1) Sample 5 from a uniform distribution. 

i P=-1 

FIG. 5. Sampling for scattered direction from incident axis 
and global axis. 

(2) If 5 < T, assume scattering takes place in the 
forward peak and use the step value times w as the 
unknown importance sampling weight. Else, assume 

scattering in the isotropic range and use the cor- 
responding weight. 

(3) Calculate the multiplicative biasing weight for 
the scatter as 

i 

(1 -p ,)/2r forward step scattering 

wb = (1 +p,1)/2r isotropic scattering. (32) 

This is just the ratio of the actual probability given by 
equation (31), to the assumed value. 

(4) Get the local direction cosine of the scattering 

angle, u. as 

I forward step scattering 

11 = 

I ~u+r,)-l isotropic scattering 

(33) 

within the respective ranges for step or isotropic scat- 
tering, using the generated random number. 

(5) Sample the azimuthal angle cp, from equation 
(28) with rp = 4, using a different random number. 

(6) Calculate p from equation (30). 

For every scatter, the history weight is multiplied 

by the weight IV,. Last flight estimation is then 
employed to score for the backscattered or trans- 
mitted flux. The coefficients form an array of two 
dimensions, which are scored depending on whether 
scattering takes place within or outside the step range. 

One of the unknowns to be evaluated is the single 

scattering albedo, w. For the other unknown we 
choose 

c = 1 -h(l --PI) (34) 

which is the second term on the right-hand side of 
equation (20) and its bounds are (- 1 < c < 1). The 
value of h in equation (20) can always be found, with 
a choice of p,, from equation (34). 

We then obtain equations of the fcrm 
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where 

& = [l-Q(O)] or Q(l) 

for the backscattered flux and transmission. Here 
M = 2 as we have two unknowns to evaluate, v is the 
total number of scatters in the medium before escape 
or termination of the history, i the number of scatters 
in the isotropic range, I the number in the step range. 

The coeflicients h,, arc obtained as 

b>,.k = ; ,i w,, i’li wh,p., fork= l,Z,...,iy 
I-, p= % 

(36) 

where f = Jo or f, is the total number of histories in 
which ,u, > 0 or p, < 0, respectively, for the (i+f)th 
scatter, r0 the total optical thickness, T, the optical 
thickness at which the scatter occurs. Thus, we have 
two equations for the backscattered flux and trans- 
mission, which we can solve for the two unknowns w 
and c, using a least squares minimization technique. 
It should be noted that the coethcients b,, can be used 
with several sets of experimental observations for the 
same set of unknowns, without having to solve the 
direct problem again. Also. if the values of z0 and W, 
are the same, the coefficients h,, can be used with 
the observed values of fluxes for different media with 
different <U or c. 

Inverse solution,for single honlogeneous layer 
In this section, we discuss the inverse Monte Carlo 

results obtained for a single, homogeneous. aniso- 
tropically scattering layer. The results from the Fy 
method of solution [47] of the direct problem were 
used as the input to the inverse problem. Two different 
phase functions were considered : one for a pulverized- 
coal size distribution and the other for a monosize 
particle cloud. The phase function for the coal size 
distribution was obtained by evaluating the phase 
function for 10 monosize particles, multiplying their 
coefficients by a constant weight 0.1, and adding the 
coefficients of the same order. The first phase function 
(PF-I) has 19 terms in the Legendre expansion, and 
the other (PF-II) has 6 terms. In Fig. 6, the first phase 
function and its step function approximations are 
shown, The corresponding Legendre polynomial co- 
efficients and other details are discussed in ref. [37]. 

The direct Monte Carlo results were obtained by 
using the SI approximation, with t0 = 1, w = 0.50.8, 
and 50000 histories. IO scatters, and were accurate 
for all values of y, as compared to the F9 results. 
These results are given in Tables 2 and 3 for both 
phase functions. 

In actual experiments, the exit fluxes Q(0) and Q(T*) 
are usually measured. Here, we present inverse results 
obtained from these quantities. For PF-I, we con- 
sidered errors within rt 10% for Q(O), and +5% for 
Q(I). Since Q(0) is typically an order of magnitude 
smaller than Q(l), it is more likely to have a larger 

--~514 
-1.0 -0.5 0.0 0.5 l.0 

cosine of scat&ring Angle, /I 

FIG. 6, Phase function for pulverized-coal size distribution. 
Exact results (solid line) from Lorenz-Mie theory (19 terms). 
Step approximations with 10, 20, 30, and 40 deg for the 

forward step. 

percentage error. For PF-II, however, fluxes are of 
the same magnitude and we take errors within + 5% 
for both Q(o) and Q(l). In Figs. 7 and 8 we plotted 
the inverse sotution results for different random errors 
in the observatjons. For these computations, a fixed 
value of A@, = 10 deg was used. The upper bounds 
were calculated with the maximum error using equa- 
tion (14). and r = 0.25. The error estimates using 
equation (14) are indicative of the maximum possible 
errors in the inverted results. We note that equation 
(14) yields the upper bounds for the errors in C, since 
this is the unknown in the least squares routine, and 
we multiply this quantity by 1..5( I +,u !) to obtain the 
upper bounds for the errors in ci , . 

The values of ci, obtained were very close to the 
actual values for a11 the cases considered in Figs. 7 
and 8 (as well as others reported in ref. 1371). With 
other error bounds on the observations, the scatter in 
the recovered ir, was found to be more when o = 0.5 
than when w = 0.8 [37]. From this we can conclude 
that better inverse results can be obtained for u, with 
larger w values. Also, since the absolute errors in U, 
are the same for different phase functions when u) is 
a constant, we conclude that better inverse results are 
possible for larger values of a,, i.e. for highly forward 
scattering phase functions. This is not surprising 
because of the choice of the phase function approxi- 
mation. We also notice that the average of the 20 
inverse results are close to those computed without 
errors in the observations. This means that, if the 
mean of several experimental observations is close to 
the exact vaiue, the mean of the inverse results will 
also be close to their actual value, depending on the 
accuracy of the direct method. 

Next the effect of r0 on the inverse results was 
considered. Two different values of optical thicknesses, 
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Table 2. Direct and inverse Monte Carlo results. With step-isotropic approxi- 
mation for 19 term phase function. Direct FN results [I -Q(O)] = 0.96818, Q( 1) = 

0.40608. w = 0.5. a, = 2.4094, r0 = 1, n = 10. N = 50000 

A0 Seed 

Direct results 

1 -Q(u) Q(l) 

Inverse results 

UJ a1 NI 

10 I 0.9682 0.4111 0.492 2.394 20 
II 0.9672 0.4197 0.494 2.383 20 

20 I 0.9687 0.4046 0.495 2.405 19 
II 0.9690 0.4061 0.496 2.395 19 

30 I 0.9681 0.405 1 0.497 2.414 18 
II 0.9682 0.4033 0.500 2.419 19 

40 1 0.9678 0.4050 0.498 2.420 12 
II 0.9678 0.4044 0.502 2.421 12 

50 I 0.9688 0.4038 0.503 2.408 16 
II 0.9675 0.4041 0.504 2.428 19 

NI, Number of iterations. 
1, Seed 34 561. 
II. Seed 76 543. 

T” = 0.1 and 2.0 were used with the phase function 1. 
In the direct Monte Carlo method 20 scatters and 
50000 histories were employed. The random errors 
were equal to those considered before. A large number 
of histories were required for acceptable direct results 
for small optical thicknesses. In general, accuracy of 
the inversion was better at large optical thickness. 
This was because there were fewer scatters within the 
medium when z is small. 

CONCLUSIONS 

In this paper, we presented a methodology for solu- 
tion of the inverse radiation problem using a Monte 
Carlo technique. This method can be used to deter- 
mine a functional variation of single scattering albedo 
in an inhomogeneous medium, and the single scat- 
tering albedo and the asymmetry factor in a homo- 
geneous, anisotropically scattering slab. 

The method was shown to be capable of accounting 

for the anisotropic scattering phase function in the 
medium if radiation intensity distribution was avail- 
able from the experiments. It is preferable to use a 
step-isotropic (9) phase function approximation in 
the inverse analysis, because it is sufficiently accurate 
for highly-forward scattering particles. The use of the 
step-Eddington (SE) approximation in the inverse 
method requires one additional variable to be deter- 
mined-the second coefficient of the scattering phase 
function. The direct and inverse solution, however, 
become more involved and cumbersome, and the 
accuracy of inverse calculations are no better than 
those using the SI approximation. 

One limitation in the present Monte Carlo inverse 
method is that z0 is to be known a priori for the 
solution, i.e. that fl is to be known. If p is also to be 
evaluated, we must perform several direct simulations, 
which eliminates the most important advantage of the 
Monte Carlo method as used so far. However, since 
the direct simulation will use specific values of the 

Table 3. Direct and inverse Monte Carlo results. With step-isotropic approxima- 
tion for six term phase function. Direct F,.+ results [I -Q(O)] = 0.76057, Q(1) = 

0.45588, w = 0.8. a, = 0.6438, ru = 1, n = 10, N = 50000 

At? Seed 

Direct results 

1 -Q(o) Q(l) 

Inverse results 

w aI NI 

10 I 0.763 1 0.4572 0.801 0.616 
II 0.7692 0.4553 0.807 0.585 

20 I 0.7605 0.4569 0.800 0.637 
II 0.7629 0.4602 0.805 0.596 

30 I 0.7607 0.4564 0.800 0.639 
II 0.7630 0.4588 0.805 0.604 

40 I 0.7600 0.4566 0.799 0.642 
11 0.7622 0.4582 0.805 0.614 

SO I 0.7604 0.4561 0.799 0.643 
II 0.7619 0.4583 0.804 0.615 

60 I 0.7603 0.4558 0.798 0.646 
II 0.7615 0.4588 0.802 0.615 

21 
21 
22 
21 
22 
21 
22 
21 
22 
22 
22 
22 

NI, Number of iterations 
I, Seed 34 567. 
II, Seed 76 543. 
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FIG. 7. Inverse results for the single scattering albedo and FIG. 9. Inverse results for the single scattering albedo and 
the first coefficient of the phase function expansion. and the the first coefficient of the phase function expansion, and the 
mean values. The exact values are T(, = 1.0, LI) = 0.5. and mean values. The exact values are t0 = 0.1, w = 0.5, and 
U, = 2.409 (PF-I). Random errors are within f 10% for a, = 2.409 (PF-I). Random errors are within k 10% for 
Q(0) and &5% for Q( 1). Converged values without error Q(O) and &.5% for Q(I). Converged values without error 
are w = 0.492 and (I~ = 2.394. The upper bounds are are w = 0.497 and a, = 2.278. The upper bounds are kO.389 

*0.040 for (3 and kO.453 for ii,. for ui and 28.252 for ri,. 

unknowns for use in the least squares routine, we need 
not use importance sampling or evaluate and store 
the coefficients h,(. This will lead to a reduction in the 
computational time for each direct run. 

The Monte Carlo solution algorithm developed in 
this work can be extended to multidimensional rect- 
angular and cylindrical geometries readily. However. 
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because the problem becomes three-dimensional. the 
computational time required for the solution may 
increase significantly. 
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SOLUTION PAR LA TECHNIQUE MONTE CARLO DU PROBLEME INVERSE DE 
RAYONNEMENT POUR UN MILIEU NON HOMOGENE ET A DIFFUSION ANISOTROPE 

R&rm&On presente une analyse de resolution du probleme inverse de rayonnement par une technique 
Monte Carlo. Pour un milieu planaire non homogene, le profil de I’albedo est obtenu par I’analyse inverse. 
Pour des milieux homogenes. diffusant ~~nisotropiquement, L’albedo et le facteur d’asym~trie se recouvrent, 
On utilise une approximation pour fonction tchelon pour tenir compte de la diffusion anisotrope dans le 
milieu. Les limites de confiance dans i’estimation des parametres sont evaluees. Les resultats montrent que 
les proprittes du milieu peuvent &tre retrouvtes avec une grande precision mime s’il y a 10% d’erreur dans 
les don&es d’entree. Le principal avantage de la methode Monte Carlo est qu’une solution unique directe 
fournit les coefficients d’un polynome d multivariable pour chaque ensemble de donnees. qui sont ensuite 
utilises pour obtenir les proprittes du milieu par une technique non lineaire de minimisation par moindres 

carres. 

LijSUNG DES INVERSEN STRAHLUNGSPROBLEMS FtiR INHOMOGENE UND 
ANISOTROP STREUENDE MEDIEN MIT HILFE DER MONTE-CARLO-METHODE 

Zus~menf~ung-car die Losung des inversen Strahlungsproblems wird unter Verwendung der Monte- 
~drlo-M~thode ein Ansatz vorgestellt. Die inverse Berechnung ergibt fur inhomogene ebene Medien das 
Profil des Albedo durch EinfachstrahIung. Fur homogene, anisotrop streuende Medien werden das Einfirch- 
Streuungsalbedo und der Asymmetrie-Faktorangegeben. Die anisotrope Streuung in Medien wird mit Hilfe 
einer Sprungfunktion angenlhert. Fehler in den Eingabedaten verursachen eine bestimmte Unsicherheit bei 
den berechneten Parametern-deren Vertrauensgrenzen werden berechnet. Die Ergebnisse zeigen, daR 
die Eigenschaften des Mediums mit hoher Genauigkeit ermittelt werden konnen, sogar im Falle eines 
zehnprozentigen Fehlers bei den Eingabedaten. Der Hauptvorteil des Monte-Carlo-Verfahrens ist. dat3 
eine einzige direkte Lijsung die Koelhzienten eines Polynoms mit mehreren Variablen fur jeden Datensatz 
hervorbringt. Diese werden dann benutzt. um mit Hilfe der Nichtlin~ren Regression die Eigenschaften 

des Mediums zu berechnen. 

PEIIIEHME OBPATHOR 3A&%Wi HSJIYYEHMII &lDI HEO~OPOxHbIX M 
AH~~~~HO PACCE~BA~~~ CPEJJ SELDOM MOHTE KAPSIO 

ikuwaqmt-RpoeeneH amuni3 pememin o6paTHoii 3anaw Hsnyvemn MeTojzoM MOHT~ Kapno. C 
no~orubloo6pa~~oro aHanH3anonyseH npo@Hnbenmtmiworoanb6eno pacceminn~r HeoniioponHbIx 
nnocKHX CpeA. j&l!4 o~opomib&x,aHH30TponHo paccemwowux CpeA 0npenenewbI eWIiHSHLdk anbde.qo 
paCC4HHI H KO%&@iWieHT aCHbiMC$TpHH. c UeJIbHl yYeTa aHH30TpOIlHOTO pWCe$IHHK Cpem HCnO,lb- 
3yeTca npH6mrrtemte cryneHqaTo# @~~oBoP @~HKUAH. RonyveHa oqeertKa rpa~~qb~ ~OCTO~~~HOCTH 
onpe8eneew napaMeTpoe IlpH ~3JiWlHbtX norpemaocrrx BO BXOXHEdx namibix. Pe3ynbTaTbi noxa3bi- 
BaHlf,wo CBOftCTBa cpe&b~ MoryT 6bITb O~~~eneH~ C Bb~coKO#i T09Hocrbio aa1B)Ke np~ IO%-~0% nor- 
~~IwIOCTH BO ~~~nwi~~natr~bw.Oc~~~~oenpeH~y~~~o MeTona Mome Kapnococ~oHT B TOM,VTO 
eiuiHHqHoe npwoe pelueHue n03BonKeT nonywwb K03i#@kiweHTbI nonuHoh5a co ~~orrib4u nepehnee- 
HbudA LUln Kalgnoii CCipHH 3KcnepHMeHTaJlbHbrx naHHbIx,KOTOpbIe 3aTeM HCIlOJIb3ylOTCX jJJln onpenene- 

HHR CBOZiCrBC~AMH~HHe#HbIMMeTO~OMMIIHU~3auHAHaHMeHblllHXKBaApaTOB. 


