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Abstract—An analysis is presented for the solution of the inverse radiation problem using a Monte Carlo
technique. For inhomogeneous planar media, the profile of the single scattering albedo is obtained from
the inverse analysis. For homogeneous, anisotropically scattering media, the single scattering albedo and
the asymmetry factor are recovered. A step phase function approximation is used to account for the
anisotropic scattering in the medium. The confidence bounds on the estimated parameters for errors in
the input data are evaluated. The results show that the medium properties can be recovered with high
accuracy even if there is up to 10% error in the input data. The primary advantage of the Monte Carlo
method is that a single direct solution yields the coefficients of a multivariate polynomial for each set of
observation data, which are then used to obtain the medium properties by a non-linear least-square
minimization technique.

INTRODUCTION

RADIATION is the predominant mode of heat transfer
in high temperature applications such as industrial
furnaces, boilers, gas turbine combustors, as well as
in fires. The distribution of radiative heat flux and
its divergence are required for thermal modeling of
these systems. They are obtained from the solution
of the radiative transfer equation (RTE) for a given
geometry, set of boundary conditions and radiative
properties of the combustion products, i.e. particles
and gases [1].

Radiative properties of particles can be theor-
etically determined using physical input parameters
such as the wavelength of the incident radiation, the
complex refractive index, the shape, size, and volume
fraction distribution of the particles in the system. The
shape of the particles is usually irregular and random ;
therefore, it is necessary to assume an average, smooth
shape, such as a sphere, to determine particle proper-
ties theoretically. The complex index of refraction,
on the other hand, is a function of the wavelength
of the incident radiation and physical and chemical
properties of the material. It cannot be measured
directly and it is required only to theoretically deter-
mine the radiative properties of particles. For these
reasons, it is preferable to determine the relevant radi-
ative properties from experiments in situ. This can be
accomplished by combining optical diagnostic tech-
niques with inverse analyses of the radiative transfer
problem. Here only one set of experimental errors will
be involved, and the properties so obtained will be
particular to the system under consideration. Our goal

in this study is to develop a versatile technique for
inverse radiation analyses in planar systems.

The radiative transfer equation
The RTE considered in this work is for azimuthally
symmetric plane parallel media and is written as {2, 3]
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The boundary conditions required for the direct and
inverse solution are the incident intensity distribu-
tions at the two faces of the plane parallel medium.
For all of the cases considered here, the boundaries
are assumed nonreflecting, with 7(0,4) =1 and
I(to, —p) = 0 for 0 < p < 1. Definitions of all the par-
ameters used are given in the Nomenclature. It should
be noted that all radiative properties are wavelength
dependent, although this dependency is not shown
explicitly in the relations.

The RTE, equation (1), is solved to obtain the radi-
ation intensity distribution in the medium. Although
several techniques are available for the solution of
the RTE [1-6], there is no universally accepted RTE
model which can be used for all types of problems.
Among all these models, the statistical Monte Carlo
technique appears to be the most versatile approach.
With increasing availability of high-speed computers,
this technique is expected to gain even more recog-
nition [1, 6].
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NOMENCLATURE

a, coefficients of the phase function K inversion parameter

expansion A wavelength
A minimization quantities U polar direction cosine
e error vector v maximum number of scatters before
E  mathematical expectation escape
f probability density function, PDF ¢ pseudo-random number
F  cumulative probability distribution a standard deviation

function, CDF T optical thickness
g asymmetry factor v scattered direction cosine
h step function peak Y  Dbiasing probability fraction
H  Heaviside or step function ¢  azimuthal angle
I radiation intensities ¢  azimuthal angle
J number of scatters scored per history ®  scattering phase function
K number of observations w  single scattering albedo
L number of coefficients of the phase Q  solid angle of propagation.

function expansion
M number of inverted parameters .

. . Subscripts
n number of scatters used in computations .
e b  biasing
N number of histories s
- [« minimization
P probability
0 fluxes d  detector
L . f last flight estimation
r minimization weight factor . . .
. i.j, k summation or array index
s exponential constant s sam ling
W  Monte Carlo weights ¢ to talp
v physical distance. .
. X importance.
Greek symbols

a error estimates Superscripts
p extinction coefficient " computed statistical estimate
¥y discrete central value ~ averaged statistical estimate
o Dirac-delta function - correct statistical estimate
0  polar angle quantities with experimental error
®  angle between incident and scattered incident direction

radiation N approximated quantity.

In Monte Carlo techniques, a finite number of
photons which obey the physical restraints of the RTE
are considered. Their initial directions, scattering
angles and the distances between each consecutive
scatter are computed using pseudo-random number
generators. Since a physical modelling of the RTE is
used, this approach can be readily applied to diverse
geometries and easily accounts for medium inhomo-
geneity and anisotropy. However, since it is a stat-
istical estimation technique, the solutions, while con-
verging to the ‘exact’ results for a large number of
statistical samples, will always have some error. It is
therefore left to the user’s discretion, computational
power, and felicity to obtain the desired accuracy.
This method has long been used in the solution of
radiative transfer [2, 5] and neutron transport prob-
lems [5,7]. A more complete review of Monte Carlo
methods and the various error reduction techniques
used therein are given in refs. [5, 8, 9].

Whereas in a direct solution of the RTE, the

medium properties and the boundary conditions are
used to obtain the radiation intensities and fluxes
within and leaving the medium, in the inverse problem
one or more of the medium properties are determined
using the measured exit fluxes and intensities. Earlier
investigators have considered inverse radiation prob-
lems where isotropic radiation is incident on plane
parallel, homogeneous, isotropically scattering [10—
12], as well as anisotropically scattering [13-24] media.
Only a few investigators have considered inhomo-
geneities in the medium [25, 26]. In another group of
inverse problems, measurements within the medium
have been employed to obtain the similarity par-
ameter, which combines the asymmetry factor and
the single scattering albedo into one unknown [27-
30]. Reviews of these inverse solution techniques are
available in the literature [31-33).

Inverse problems other than simple one-dimen-
sional systems have not received much attention in
the past and only a few studies have appeared in the
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literature {34-36]. The main reason for this is two-
fold: first, there is a lack of efficient direct solution
methods for multidimensional, inhomogeneous, and
anisotropically scattering media, which yield accurate
radiative intensity distributions and can be employed
in iterative or least-square minimization based inver-
sion schemes, and second, it is very difficult to develop
inverse solution algorithms for general geometries
which do not require the solution of the direct prob-
lem. Monte Carlo techniques appear to be the only
viable approach to solve the direct and inverse radi-
ation problem in complicated geometries.

In this paper, we introduce a Monte Carlo solution
technique for the inverse radiation problem for
inhomogeneous and anisotropically scattering planar
media. A functional form of the single scattering
albedo is considered for inhomogeneous media. For
the case of anisotropic scattering, a new step phase
function approximation is employed to evaluate the
asymmetry factor of a homogeneous, anisotropically
scattering system.

It is worth noting that here we will assume the
medium optical thickness is known. Therefore, the
technique, as presented here, can only be used for the
solution of a practical problem, if the optical path
length is measured from independent experiments.
However, it may be possible to use this methodology
in an iterative algorithm to predict the optical thick-
ness ; this will be considered in a separate study.

MONTE CARLO SIMULATION

A detailed outline of the developed Monte Carlo
method of solution for the direct and inverse problems
is described in refs. [37, 38]. Here, we will present only
a summary of the method. First, we will explain the
statistical sampling procedures. Then the direct and
inverse solution of the radiation problem with the
importance sampling technique will be discussed.

Statistical sampling

Monte Carlo simulation involves the random sam-
pling of the independent parameters of equation (1),
i.e. the incident and scattering angles # and y, and
the scattering distances y or 7, using the corresponding
probability density functions (PDFs). If we define
P{a < & < b} as the probability that ¢ takes a value
between g and b, then the PDF is defined as that
function f(¢) which yields the probability of & taking
a value between £ and &4 A¢ as f(£)A in the limit as
A¢ — 0. Then

h
P{a<€<b}=Jf(€)dC. 03

A cumulative probability distribution function (CDF)
F(x) yields the probability P{¢ < x}, and is defined
as

F(x) =£ f@)de. 3)

A uniformly distributed random variable is one the
PDF of which is such that the probability of £ taking
a value between & and £4d¢ is d¢. Using pseudo-
random number generators, we usually obtain a uni-
formly distributed random variable ¢ between 0 and
1. We can use the CDF to generate x, the random
variable that we wish to sample, as x = F~'(&).

For obtaining &, we can use six different pseudo-
random number generation options from IMSL [39],
depending on how ‘random’ we would like ¢ to be.
Three multipliers are used in this generation ; options
I and 2 use 16807 as the multiplier, 3 and 4 use
397204094, and 5 and 6 use 950 706 376. In addition,
options 2, 4, and 6 employ an additional shuffling
process which involves generation of a table of 128
random numbers, shuffling them, and selecting ran-
domly from this table. Option 1 was the simplest and
computationally the fastest, while option 6 was more
‘random” and takes the longest time for generation.
In our preliminary computations, we considered all
these options ; the results reported in this paper were
generated using option 1 [37].

Direct Monte Carlo solution

For a given source of photons, the initial direction
can be sampled from either the intensity [F(u)] or the
flux [Fp(p)] distribution. For each photon history, a
sampling weight, W, = u,, is used for every score for
the fluxes when sampling from a unit intensity dis-
tribution, and W, = 1/2 when sampling from a unit
flux density distribution. The history weight is the
product of the initial sampling weight W, and scat-
tering probability w (i.e. the single scattering albedo)
at every scatter. Here, a history is defined as one
complete random sequence which yields an estimate
for the statistical quantities to be evaluated, and a run
comprises of N such histories.

The probability of the photon penetrating to a dis-
tance y is e, where B is the extinction coefficient
and y the physical distance travelled by the photon.
This yields the CDF for the scattering distance as
F(y) = 1—e # = ¢, from which the collision distance
yisevaluated as y = —In &/f. Thus, we must know f,
the extinction coefficient, to perform the direct Monte
Carlo simulation. In the analysis presented here, we
assume f is known.

Ordinarily, scoring for the exit fluxes is done when
the photon exits the medium. It is preferable to score
for all photons scattered in the medium to reduce
variance in the results, since there will be more scores
for each history. This can be accomplished by stretch-
ing each flight path and simulating escape before each
scatter. This is called last flight estimation (LFE). The
probability of such an escape is

e o Tliny
W: =

eT:/“‘:

ifp, >0

if u, <0 @
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F1G. 1. The last flight estimation for a photon with three

scatters before escape. LFE extensions shown as the dashed
lines.

for the ith scatter. Here W, is denoted as the¢ LFE
weight. In Fig. 1. we show these extensions before
each scatter by the dashed lines, and indicate the LFE
distances 7, and direction cosines g, [37].

For scattered intensities, a LFE weight W, similar
to equation (4) is obtained by replacing u; with p, the
direction cosine of the detector angle. The intensities
are scored by the product of the history weight W,
and W;. Here W, = pu,/2p, when sampling from the
unit intensity distribution and 1/4y, when sampling
from the unit flux distribution. Also, the direct trans-
mitted intensity e " should be included in the
weight for the entire direct run (not for each history).
At each scatter point, the cumulative history weight
is further multiplied by w, the single scattering albedo.
which may be a function of the optical thickness.

The photon direction after interaction is sampled
next, for which the CDF is written as

(] 1!
F(O) = [j ®(cos By sin O d()’] /
i i

H

l:jn ®(cos 8) sin O dO’] (5)

where ®(cos 0°) is the Legendre polynomial expan-
sion of the scattering phase function as in equation
{1). For isotropic scattering, ®(cos 8") =1 and this
yields F(8) = (1 —cos 8)/2 = & which is used to com-
pute u(=cos §), after £ is obtained from a random
number generator. Using this value of u. the back-
scattered or transmitted flux densities are scored using
the LFE, and the optical distance to the next scatter
point is computed. If this point lies outside the
medium, the history s terminated without any further
scoring. Otherwise, the intensities are scored, the next
scatter angle is sampled, and the history continued
until the photon escapes, or until the maximum
number of scatters is reached. For purposes of com-
putation, we limit the total numbers of scatters for
each history to .

Inverse Monte Carlo solution
Inverse solution techniques, such as those given in
refs. [11, 12, 16, 21, 23-26], involve iterative con-
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vergence using several direct solutions of the radiative
transfer equation. The iterations are terminated when
the direct solution results using the ‘converged’ prop-
erty values are acceptably close to the ‘measured’
intensity or flux values. However, using a Monte
Carlo technique with the concept of importance sam-
pling requires only a single direct Monte Carlo simu-
lation. Using importance sampling, the unknown
probability density function (PDF) is replaced by a
known PDF during the simulation. and the unknown
PDF appears as a multiplicative weighting function
which is to be evaluated.

Historically, the concept of importance sampling
arose from the need to reduce the statistical un-
certainty in the direct Monte Carlo estimates [5, 8].
The name stems from the fact that, in order to reduce
the variance, the random sampling should yield morc
samples from the more important parts of the sam-
pling region [5.37]. The use of this concept offers
the primary advantage of the inverse Monte Carlo
method over other inverse methods that use iterative
convergence, such as those developed in refs. [12, 24,
26]. because the unknown parameters are not used in
the direct solution.

For the case of isotropic scattering, an estimate
for the backscattered and transmitted fluxes can be
obtained of the form

i M
0(0) =j HO, — ) d‘u;/J IO, ppdp
i i 13

H i {
Q(ro) =J‘ HETN T d,ul,z’ J; 10, yp dp
o /

1 N
= 3y W (6
N ,; . (6}
where N is the total number of histories (or incident
photons) and W, the total increment of the scored
quantities for each history given as

J,
W,=W_5 W, wyj. (7)

=t
Here, the quantities within the summation sign are
the LFE weights, and J; a variable number. When
scoring for the fluxes, J, , is the number of scatters in
the ith history where the scattered angle p, < 0, and
J.; is the number of scatters in the ith history where
the scattered angle i, > 0. When scoring for the inten-
sities J; = N. Also, 1, is the optical depth at which the

Jth scatter occurs, and v, the actual total number of

scatters for each value of ;.

A similar equation for the case of constant single
scatter albedo was given by Dunn [11]. where he
assumed that the total number of scatters, n, is the
same as the total interactions with scattering in either
direction, J,, for every source photon. While this is
true when scoring for the intensities, it is not correct
when scoring for the fluxes, since J ,+J,;, <n.
Scoring for the intensities can also be performed dur-
ing the direct simulation using this concept, with the
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fluxes replaced by the intensities in equation (6) and
using the corresponding weights W, and W; for the
particular angle of interest.

For equation (6), and knowing W, and W, in equa-
tion (7), we obtain an estimate for the backscattered
and transmitted fluxes of the form

00) = bywg +b,03 + b0} + -+ + b0},
v<n
Q(To) =bo+b,wo+b,05 +ha3+ - +bwh,

v<n (8)

where v is the maximum number of scatters before
escape. Note that the b-coefficients of ((0) and O(z,)
in equation (8) are not the same. Because these
coefficients are determined following the same pro-
cedures, we preferred to refer to them with a single
parameter to facilitate the discussion in the rest of
the paper. These polynomials have all coefficients
positive, which means that their value is mono-
tonically increasing with . Therefore, there is only
one single positive root which will satisfy equation (8)
and it is found by either a simple iterative procedure,
or using non-linear regression routines [39].

The coefficients b, in equation (8) can be used with
several sets of experimental observations for the same
set of unknowns, without having to solve the direct
problem again. Also, if the value of the sampling
parameters such as t,, W,, are the same, the coeffi-
cients b; can be used with the observed values of fluxes
for different media with different, but constant, w.
Thus one direct run of the Monte Carlo method
can be used repeatedly for several inverse solutions.

The least squares minimization routines minimize
the quantity

2 1 & /’I‘k - Ak }2
E'==: : 9
2 I\gl { Wc,k ( )

Here A, is either the flux (see equation (8)) or intensity
value input, A, its direct estimate using the current
values of the unknowns, K the total number of obser-
vations of fluxes and intensities, and W, the mini-
mization weights to account for the magnitudes of the
different observations 4, usually set as
Wei=4, (1)
where r is some fraction. Unless otherwise mentioned,
we set r = 0, which yields W, = 1 for all the obser-
vations. This choice results in a minimization of the
differences, which is preferable when we would like to
ignore the effect of possibly larger percentage errors in
the intensities/fluxes of smaller magnitude. For cases
where importance is to be given to all observations,
however small they may be, r = 0.25 or 0.5 yields
more efficient convergence.
The Levenberg-Marquardt algorithm was used in
the least squares minimization routine [39]. In this

minimization technique, a trust region approach was
employed, as discussed by Dennis and Schnabel [40],
which yields an increment for the unknown variables
during each iteration. This increment is given as

AA, = [RIR+p[1]]" ' R'e (an

where R is the Jacobian containing the partial deriva-
tives of the minimization quantity for each obser-
vation with respect to the vector of variables, p the
Levenberg—Marquardt parameter, 1] the identity
matrix, AA, the column vector of the increments to
the vector of variables A for the ith iteration, and ¢
the column vector of the current minimization quan-
tity for each observation as given in equation (9) with-
out squaring, namely

e = (A — AWy (12)

With p =0 and e as the vector of the differences
between the final direct estimates and the observed
values, equation (11) yields the vector of errors in
the inverted quantities. In the bounded least squares
approach to evaluate the values of the variable within
specified bounds, an additional active set strategy pro-
posed by Gill and Murray [41] was employed.

The details of the variance and confidence bounds
we consider here are discussed in refs. [37.38], and
they are similar to those given in refs. [12,26]. The
only difference is that, in addition to the errors in the
measured quantities 4, which are the observed values
to be used in the inverse method, we will have the
standard deviation of the direct Monte Carlo simu-
lation. Then, the total standard deviation of 4 to be
used to compute the standard deviation for the inverse
solution can be written as

o(A) =[o*(A)+ol, (D" (13)

A direct analytical solution is performed to eliminate
o(A) in equation (13). Here only the experimental
errors contribute to the inverse solution, as in the
inverse solutions of Ho and Ozisik [12, 26]. In a Monte
Carlo simulation, however. the o(4) contribution
could be significant.

The upper bounds for the errors can be evaluated
approximately by using the similarity of equation (11)
to linear models theory [42], as

[03(A)] = 62(A) - diag [R(A)RA)) ' (14)

where a{4) is a scalar quantity which we set as the
maximum value of the errors in the observations, and
A the vector of inverse estimates, as in equation {(11).

ISOTROPICALLY SCATTERING
INHOMOGENEOUS MEDIA

The details of the analysis for determining the single
scattering albedo in plane paraliel, isotropically scat-
tering media are discussed in ref. [37] for a single
homogeneous layer, inhomogeneous half space, and
two homogeneous layers. Since these are similar to
the problems solved by Dunn [11,25], we will not
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discuss them here. Instead, we will focus on a single
inhomogeneous layer with exponential varying single
scattering albedo. The exact solution of this problem
with the Fy method is given in ref. [43] for both
isotropic and collimated incident flux boundary
conditions.

The slab single scattering albedo is assumed to have
a functional form as m, e **. where t is the optical
thickness and @, and 5 are constants to be evaluated
in the inverse problem (M =2). As the value of s
increases, the slab approaches a homogeneous single
layer. Dunn [25] solved this problem assuming the slab
to be composed of five layers with constant albedo in
each layer. He considered the case where the total
optical thickness 7,is S.and s = 1, mg = 1.

First, we attempted to simulate the results reported
by Dunn [25]. The discrete values of the single scat-
tering albedo were used in each of the five discrete
layers as given in ref. {25] to obtain the Monte Carlo
direct estimates for the exit fluxes and intensities.
These results were compared against those of the F,
method. The backscattered flux and intensity values
obtained this way were different in the second sig-
nificant digit, whereas the transmitted flux values
differed in the first digit. To ensure that we did not
make any error in calculation, we also obtained the
discrete ordinate results [44] for the five layer approxi-
mation using the albedo values given in ref. [25]. These
results were in very close agreement with our direct
Monte Carlo results, but not with the input F,, results
used by Dunn [25] to obtain the w profile from inverse
calculations. This suggests that there may be a numeri-
cal error in the inverse results given in ref. [25]. Using
our Monte Carlo technique and the Fy results, we
obtained the discrete values of w as 0.778. 0.001, 0.001.
0.001. 0.087, whereas Dunn reported values of 0.74,
0.27, 0.10, 0.037, 0.014. The bounds used in our cal-
culations were 0.001 < w < 1.0, and we used the two
fluxes and three intensity values for inversion.

We also tried other methods of obtaining the vari-
ation of the albedo. First. we used an exponential
function for . By taking x = e '*, we scored with
wek" for every scatter using importance sampling. We
then obtained an expression in the unknowns w, and
x, which we solved using a least squares technique.
Since © appeared in the exponent and an infinite
number of 1 values were possible in sampling, it was
necessary to discretize the possible values to a finite
number.

For the vth scatter, the importance sampling weight
is

W, =w) []r"

i=1

(15)

where 0 € 1, € 1, to be different in each history. If
we restrict the direct simulation to n scatters, the
maximum value of the exponent will be nr,. We div-
ided this maximum into nf discrete divisions, each of
which had a central value y,. Then, using equations
(6), (8), and (13), we obtained the following equations :

S. SusraMaNiaM and M. P. MENGU¢

Ae=3% Y b, k=12,...K (16)

where
(an

The observations used were Q(0), O(1)., [{1,0.5),
{0, —0.5), and K0, —1). Therefore, the total number
of observations. K, was 5. Here J is the number of
histories where, for the vth scatter, Z,_ 1, is within
the corresponding discretized element of which y, is
the central value, and g, is in the corresponding exit
direction when scoring for the fluxes. When scoring
for intensities, J = N, since scoring is done at every
scatter. Again, values of W, are the last flight esti-
mation weights.

After obtaining the coefficients b, of equation (&)
for the five observations, we used bounded and
unbounded least squares procedures [39] to obtain the
values of w, and k. For this case, we used a value of
r=0.25 in equation (10) for the minimization
weights, to have convergence with fewer iterations.
The errors in the inverted quantities, calculated using
equation (11) with p = 0, were always seen to be in
agreement with the actual errors. The results of these
computations are given in Table 1. For cases II and
II1, the vector ¢ used in equation (11) was obtained
from the error in the observations only and yielded
the change from the converged results of case I.

In experimental observations, it is probable that the
readings of smaller magnitude have greater scope for
error. With this in mind, we considered random errors
within +2, 10, 20, 2. 2% respectively, for the five
observations and performed inverse runs with 20 such
sets of errors, with r = 0.25 (see Fig. 2). In order
to calculate the upper bounds, we took a(A) as the
maximum value in the vector ¢. Using this, we cal-
culated the bounds as +0.123 and +0.149 for v, and
&, respectively. With r = 0, these bounds were 3-0.137
and +0.168. Figure 2 shows that the converged results
are well within the predicted bounds and the
maximum value of w, corresponds to the minimum
value of x, and vice versa. Two single scattering albedo
profiles based on these converged results (worst cases)
are plotted against the exact functional expression for
w in Fig. 3. The agreement between the exact and
recovered profiles is satisfactory.

We also considered the case of collimated radiation
incident on one boundary at other than the normal
direction. All the medium properties were the same as
for the case of isotropic incidence, and the Fy direct
results were obtained from ref. [43]. The only differ-
ence in the direct method was that the incident direc-
tion cosine u, = 0.9 was considered for all the his-
tories. The sampling weights W, used were p, and
iof2pg for the fluxes and intensities respectively, when
sampling for photons with unit flux density normal
to the face. We considered random errors the same as
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Table 1. Inverse Monte Carlo results. With @ = wqx* (exact values for w, = 1.0,
x = 0.368) 40 000 histories and six scatters for the direct simulation

Unbounded convergence Boundedt
Error Dq K (o) a(K) (7} K
i 1.005 0.372 0.0048 0.0039 1.000 0.379
11 1.017 0.371 0.0126 —0.0010 1.000 0.396
I 1.030 0.370 0.0249 —0.0019 1.000 0.413

I, No experimental error, fe] = exact-direct Monte Carlo.
I1, 2% experimental error, [e] = observed-exact.
111, 4% experimental error, [¢] = observed-exact.
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1 The bounds are 0.001 < &y, £ < 1.0.

before, and obtained results very similar to those
given in Fig. 2.

It is possible to consider a linear function approxi-
mation to the exponentially decaying single scattering
albedo w = w, e, if s ~ 10 or greater, because then
the profile approaches a linear one. Thus, assuming
that ® = w,+w-7 , and using importance sampling,
we solved the direct problem and found these
coefficients from the inverse solution. The equations
for the observations are obtained in the form

A, = z Z b, (18)
i=01=0
where
! W J i
Z by=—" Z Wi, T (0, +w,1). (19)
=0 N 7=1 =0

The direct solution for this case takes considerably
longer CPU time since a greater number of scatters
(n =20 when s = 10 and n = 40 when s = 100) are

15
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F1G. 2. Inverse results using exponential single scattering

albedo profile. Isotropic incident radiation on single inhomo-

geneous slab. The exact values are 1, = 5.0, we = 1.0, and

Kk = 0.368. Converged values without error are w, = 1.005,

K = 0.372. The upper bounds are +0.123 for @,, and +0.149
for K.

needed with the same number of histories, and an
additional computational loop is to be performed for
each score to account for the product within the sum-
mation sign in equation (19). For the case of s = 10,
with 20000 scatters, the CPU time required for
the direct solution was 145 CPU seconds using
the IBM 3090-300 supercomputer at the University of
Kentucky. The bounds which were calculated for &,
and @, using the maximum value in ¢ were 1 0.0089,
+0.0107, respectively. The single scatter albedo pro-
files obtained from the worst results are compared
against the exact functional form for w in Fig. 4.

ANISOTROPICALLY SCATTERING MEDIA

In this section, we discuss the inverse problem for
anisotropically scattering, plane parallel media. The
use of the scattering phase function of order L as in
equation (1) in the inverse solution would involve
determination of the L g, coefficients. Therefore, we
need an approximation to the phase function that
yields acceptably accurate direct results and minimizes
the number of unknowns to be evaluated.

1217

F1G6. 3. Comparison of inverse solution results with exact
w-profile. Single layer with w = w, e~ ™, with s = 1. Dashed
lines represent the worst inverse solution results.
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T

FiG. 4. Comparison of inverse solution results with exact
w-profile. Single layer with w = wy e ™"  with s = 10. Dashed
lines represent the worst inverse solution resulits.

Phase function approximation and analysis

An indication of the behavior of the scattering
phase function for spherical particles can be obtained
from the size parameter, x, which is defined as nd/4,
where d is the scattering particle diameter and / the
wavelength of the incident radiation. As the size par-
ameter increases, the particles scatter increasingly in
the forward direction, whereas the phase function
values in other directions remain, for the most part,
within the same order of magnitude. Phase function
approximations should be capable of representing
such functions with a fewer number of parameters.

In a recent paper [45] a step function approximation
for the scattering phase function was outlined. and a
solution scheme to recover the first few coefficients
of the full phase function from experiments was
discussed. This approximation is necessary for the
Monte Carlo simulation in order to have a simple
form of the phase function which approximates the
scattering pattern and yields the same mean cosine of
the scattering angle as the original phase function.
It is worth noting that Dirac-delta phase function
approximations are unsuitable for the Monte Carlo
solutions. The delta functions, by definition, possess
infinite value at 0 = 0 and cannot be used in any
physical sense.

The simplest step phase function approximation is
the step-isotropic (SI) phase function, which is written
as [45]

() = 2hH(p—p ) +{1—h(1—p))}.  (20)

Here i, = cos A¢,, where A8, is the small angle over
which the step is defined, and H{u—u,) is the step or
Heaviside function which has value 1 when g > g,
and 0 for all other values of u. The superscript (7) is

S. SuBraMANIAM and M. P. MENGU¢

used to denote the approximated phase function or
quantity.

As elucidated by Pomraning [46], the best strategy
for determining the coefficients of a lower order
approximation is to satisfy the lower order moments
of the phase function. The phase function given by
equation (20) satisfies the zeroth moment. To obtain
h, we satisfy the first moment

Jd)(u)u du

‘which yields
h = 2a,/[3(1—pui)] (2D

for a given y,. Here a, is the first coefficient of the full
phase function
(22)

O = T a,P()

where P, is the orthogonal Legendre polynomial of
order n. The first moment of the phase function yields
the mean cosine of the scattering angle or the asym-
metry factor, which is also satisfied by the step func-
tion approximation.

The step function approximation given by equation
(20) yields a reasonable physical approximation to the
true phase function. However, when @, > 1.5(1+ ),
the second term on the right-hand side of equation
(20) has a negative value, which is not physically per-
missible, although the results of the direct simulation
may converge to the exact results for larger optical
thicknesses and increased number of scatters. In such
a case, a larger value of u, is required to ensure that
the second term is always positive. This corresponds
to a narrower angular step.

The use of the second moment of the phase function

yields a step-Eddington (SE) approximation
O(u) = 2hH(pu—p )+ {1 =h(1 —p )} (1 +d, ) (23)

which is a modified linearly anisotropic phase func-
tion. Here / and 4, are given by

dy = [a) = 3h(1—pui)/2)/[1 —h(1 — )]
h=2a/[5u;(1 _H%)]-

The results reported in this paper were obtained
employing the SI phase function. Written in its azi-
muthally-dependent form, equation (20) is expressed
as

B(cos @) = 2hH(cos @ —cos AB )
+{l—-h(l—cos A® )}

(24)
(25)

(26)

where cos A®, = y,, and @ is the scattering angle in
the relation

c0s @ = pp’+ (1 —p?)" 2 (1—p'?)"" cos (o~ o).
(27)

Here u” and p are the incident and scattered direction
cosines, and ¢’, ¢ are the incident and scattered azi-
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muthal angles, all sampled with reference to a fixed
coordinate system. For isotropic scattering, we can
sample for the azimuthal angle as

¢ =n2-1) (28)

in the range — =z to 7 [8]. Thus we evaluate cos ® from
equation (27), and multiply the history weight with
the probability of scatter, depending on whether cos @
is smaller or greater than p,. This probability is
[14A(1+u,)] for scattering in the step range of the
phase function, or [1 —A(1 — u,)] for the other angles.
This quantity, multiplied by w, will be the importance
sampling weight.

In the direct Monte Carlo simulation for the inverse
solution, we used the concept of importance sampling
to remove the unknowns in the anisotropically scat-
tering phase function. In effect, we sampled for the
scattered direction from an isotropically scattering
PDF., and weight by the appropriate unknown,
depending on whether the scattering is in the step or
isotropic portion of the phase function. For g, ~ 1,
this procedure yielded few particles scattered in the
forward direction, since we sampled for y from an
isotropic scattering distribution. In order to have a
good statistical representation of the forward scat-
tering, we needed to force more particles to scatter in
the forward step region, which is called biasing.

The solution of equation (27) for x, when ¢ = ¢’
and cos @ = cos A®, = yu,, is

(29)

This equation yields different values for the step scat-
tering limits of y, for different values of the incident
angle u’, which does not facilitate biasing, as we do
not have a fixed value of the step scattering range of
the phase function. Also, the azimuthal angle range is
correspondingly different for different values of the
incident direction cosine. The only way we can keep
the polar direction cosine and the azimuthal angle
range for the step scattering constant is to sample for
the scattered direction cosine, v, and the azimuthal
angle of scattering, ¢, with reference to the incident
direction cosine y’, at every location, and use these to
get the global physical direction cosine as [8]

= 2 (I pip? —p =)',

p=po—(1—pH)"A-v)"cosp. (30)

If v < p,, the step scattering holds for all ¢, as illus-
trated in Fig. 5. We observe here that it is necessary
to sample for @, to obtain y using equation (30), for
every scatter. The method for the biasing of scatter in
the step direction is outlined next.

We know from the CDF for isotropic scatter
[F(0) = (1 —u)/2] that the probability of scatter in the
step range is

Pl <p<1)=(—p)2 (31)

Now, if we want this probability as Y, the steps to be
taken are:

(1) Sample ¢ from a uniform distribution.

=-1

Incident
global ¢, ¥

Scattered
. local axis

~——

Scattered
global ¢, 1

Global -
axis

f st
F1G. 5. Sampling for scattered direction from incident axis
and global axis.

(2) If £ < Y, assume scattering takes place in the
forward peak and use the step value times w as the
unknown importance sampling weight. Else, assume
scattering in the isotropic range and use the cor-
responding weight.

(3) Calculate the multiplicative biasing weight for
the scatter as

(1—p)/2Y forward step scattering
b = (32)

(14+u,)/2Y  isotropic scattering.

This is just the ratio of the actual probability given by
equation (31), to the assumed value.

(4) Get the local direction cosine of the scattering
angle, v, as

% A—u)+u, forward step scattering
V=

&—1 . . .

=i (14u,)—1 1isotropic scattering

(33)

within the respective ranges for step or isotropic scat-
tering, using the generated random number.
(5) Sample the azimuthal angle ¢, from equation
(28) with ¢ = ¢, using a different random number.
(6) Calculate x from equation (30).

For every scatter, the history weight is multiplied
by the weight W,. Last flight estimation is then
employed to score for the backscattered or trans-
mitted flux. The coefficients form an array of two
dimensions, which are scored depending on whether
scattering takes place within or outside the step range.

One of the unknowns to be evaluated is the single
scattering albedo, w. For the other unknown we
choose

c=1-h(1—p) (34)

which is the second term on the right-hand side of
equation (20) and its bounds are (—1 < ¢ < 1). The
value of 4 in equation (20) can always be found, with
a choice of y,, from equation (34).

We then obtain equations of the form
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A, = ; ;z;},,kw'w (c+2h) (35)

where
Ae=[1-0O] or Q1)
for the backscattered flux and transmission. Here
M = 2 as we have two unknowns to evaluate, v is the
total number of scatters in the medium before escape
or termination of the history, i the number of scatters
in the isotropic range, / the number in the step range.
The coefficients b, are obtained as

(It

W J 47
N 2 W [l Wy, fork=1.2.....K
pe=1

i=1
(36)

where J = J, or J, is the total number of histories in
which g, > 0 or u, < 0, respectively, for the (i+/)th
scatter, 7, the total optical thickness, 7, the optical
thickness at which the scatter occurs. Thus, we have
two equations for the backscattered flux and trans-
mission, which we can solve for the two unknowns w
and ¢, using a least squares minimization technique.
It should be noted that the coefficients 5, can be used
with several sets of experimental observations for the
same set of unknowns, without having to solve the
direct problem again. Also, if the values of 7, and W
are the same, the coefficients b, can be used with
the observed values of fluxes for different media with
different w or ¢.

b,uc =

Inverse solution for single homogeneous layer

In this section, we discuss the inverse Monte Carlo
results obtained for a single, homogeneous, aniso-
tropically scattering layer. The results from the F,
method of solution [47] of the direct problem were
used as the input to the inverse problem. Two different
phase functions were considered : one for a pulverized-
coal size distribution and the other for a monosize
particle cloud. The phase function for the coal size
distribution was obtained by evaluating the phase
function for 10 monosize particles, multiplying their
coefficients by a constant weight 0.1, and adding the
coefficients of the same order. The first phase function
(PF-I) has 19 terms in the Legendre expansion, and
the other (PF-II) has 6 terms. In Fig. 6, the first phase
function and its step function approximations are
shown. The corresponding Legendre polynomial co-
efficients and other details are discussed in ref. [37].

The direct Monte Carlo results were obtained by
using the SI approximation, with 1, = 1, w = 0.5, 0.8,
and 50000 histories, 10 scatters, and were accurate
for all values of u, as compared to the F, results.
These results are given in Tables 2 and 3 for both
phase functions.

In actual experiments, the exit fluxes Q(0) and QO(ry)
are usually measured. Here, we present inverse results
obtained from these quantities. For PF-I, we con-
sidered errors within +10% for Q(0), and +5% for
Q(1). Since Q(0) is typically an order of magnitude
smaller than Q(1), it is more likely to have a larger

2.57

2.0

15

ol

1.0

Phase Function (log 10}

~1.0 7]

-15 Y
-1.0
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Cosine of Scattering Angle, .2

F1G. 6. Phase function for pulverized-coal size distribution,

Exact results (solid line) from Lorenz-Mie theory (19 terms).

Step approximations with 10, 20, 30, and 40 deg for the
forward step.

percentage error. For PF-1I, however, fluxes are of
the same magnitude and we take errors within +35%
for both Q(0) and Q(1). In Figs. 7 and 8 we plotted
the inverse solution results for different random errors
in the observations. For these computations, a fixed
value of A®, = 10 deg was used. The upper bounds
were calculated with the maximum error using equa-
tion (14), and r = 0.25. The error estimates using
equation (14) are indicative of the maximum possible
errors in the inverted results. We note that equation
(14) yields the upper bounds for the errors in ¢, since
this is the unknown in the least squares routine, and
we multiply this quantity by 1.5(1 +4,) to obtain the
upper bounds for the errors in d,.

The values of ¢ obtained were very close to the
actual values for all the cases considered in Figs. 7
and 8 (as well as others reported in ref. [37]). With
other error bounds on the observations, the scatter in
the recovered 4, was found to be more when w = 0.5
than when @ = 0.8 [37]. From this we can conclude
that better inverse results can be obtained for a, with
larger w values. Also, since the absolute errors in «,
are the same for different phase functions when w is
a constant, we conclude that better inverse results are
possible for larger values of @, i.e. for highly forward
scattering phase functions. This is not surprising
because of the choice of the phase function approxi-
mation. We also notice that the average of the 20
inverse results are close to those computed without
errors in the observations. This means that, if the
mean of several experimental observations is close to
the exact value, the mean of the inverse results will
also be close to their actual value, depending on the
accuracy of the direct method.

Next the effect of 1, on the inverse results was
considered. Two different values of optical thicknesses,
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Table 2. Direct and inverse Monte Carlo results, With step-isotropic approxi-
mation for 19 term phase function. Direct Fy results {1 —Q(0)] = 0.96818, Q(1) =
0.40608, w = 0.5, a, = 2.4094, 1, = 1, n = 10, N = 50000

Direct results

Inverse results

A8 Seed 1-0©0) oM w a, NI
10 I 09682 04111 0492 2.394 20
i 09672 04197 0494  2.383 20
20 I 0.9687  0.4046 0495  2.405 19
It 0.9690  0.4061 0496  2.395 19
30 I 0.9681  0.4051 0497 2414 18
1l 0.9682  0.4033 0.500  2.419 19
40 1 0.9678  0.4050 0498  2.420 12
i 0.9678  0.4044 0.502  2.421 12
50 1 0.9688  0.4038 0.503  2.408 16
I 0.9675  0.4041 0.504  2.428 19

NI, Number of iterations.
1, Seed 34 567.
11, Seed 76 543.

7o = 0.1 and 2.0 were used with the phase function 1.
In the direct Monte Carlo method 20 scatters and
50000 histories were employed. The random errors
were equal to those considered before. A large number
of histories were required for acceptable direct results
for small optical thicknesses. In general, accuracy of
the inversion was better at large optical thickness.
This was because there were fewer scatters within the
medium when 7 is small.

CONCLUSIONS

In this paper, we presented a methodology for solu-
tion of the inverse radiation problem using a Monte
Carlo technique. This method can be used to deter-
mine a functional variation of single scattering albedo
in an inhomogeneous medium, and the single scat-
tering albedo and the asymmetry factor in a homo-
geneous, anisotropically scattering slab.

The method was shown to be capable of accounting

for the anisotropic scattering phase function in the
medium if radiation intensity distribution was avail-
able from the experiments. It is preferable to use a
step-isotropic (SI) phase function approximation in
the inverse analysis, because it is sufficiently accurate
for highly-forward scattering particles. The use of the
step-Eddington (SE) approximation in the inverse
method requires one additional variable to be deter-
mined—the second coefficient of the scattering phase
function. The direct and inverse solution, however,
become more involved and cumbersome, and the
accuracy of inverse calculations are no better than
those using the SI approximation.

One limitation in the present Monte Carlo inverse
method is that 7, is to be known a priori for the
solution, i.e. that § is to be known. If § is also to be
evaluated, we must perform several direct simulations,
which eliminates the most important advantage of the
Monte Carlo method as used so far. However, since
the direct simulation will use specific values of the

Table 3. Direct and inverse Monte Carlo results. With step-isotropic approxima-
tion for six term phase function. Direct F,, results [1 —Q(0)] = 0.76057, Q(1) =
0.45588, w = 0.8, a, = 0.6438, 1, = 1, n = 10, N = 50000

Direct results

Inverse results

AD Seed 1-Q(0) Q) w a, NI
10 1 0.7631  0.4572 0.801 0.616 21
I 0.7692  0.4553 0.807 0.585 21
20 1 0.7605  0.4569 0.800 0.637 22
11 0.7629  0.4602 0.805 0.596 21
30 1 0.7607  0.4564 0.800 0.639 22
11 0.7630  0.4588 0.805 0.604 21
40 I 0.7600  0.4566 0.799 0.642 22
11 0.7622 0.4582 0.805 0.614 21
50 I 0.7604  0.4561 0.799 0.643 22
I 0.7619  0.4583 0.804 0.615 22
60 I 0.7603  0.4558 0.798 0.646 22
11 0.7615  0.4588 0.802 0.615 22

NI, Number of iterations.
I, Seed 34 567.
11, Seed 76 543.
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FiG. 7. Inverse results for the single scattering albedo and

the first coefficient of the phase function expansion, and the

mean values. The exact values are 7, = 1.0, v = 0.5, and

a, = 2.409 (PF-1). Random errors are within +10% for

O(0) and £5% for Q(1). Converged values without error

are @ =10492 and «, =2.394. The upper bounds are
+0.040 for ¢» and +£0.453 for 4,.

unknowns for use in the least squares routine, we need
not use importance sampling or evaluate and store
the coefficients b,. This will lead to a reduction in the
computational time for each direct run.

The Monte Carlo solution algorithm developed in
this work can be extended to multidimensional rect-
angular and cylindrical geometries readily. However.
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and +5% for Q(1). Converged values without error are

w = 0.801 and ¢, = 0.616. The upper bounds are +0.027 for
@ and +0.246 for a,.
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mean values. The exact values are 7, = 0.1, @ = 0.5, and

a, = 2,409 (PF-1). Random errors are within +10% for

(0} and £ 5% for Q(1). Converged values without error

arew = 0.497 and a, = 2.278. The upper bounds are +0.389
for ¢y and +8.252 for 4,.

because the problem becomes threc-dimensional. the
computational time required for the solution may
increase significantly.
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SOLUTION PAR LA TECHNIQUE MONTE CARLO DU PROBLEME INVERSE DE
RAYONNEMENT POUR UN MILIEU NON HOMOGENE ET A DIFFUSION ANISOTROPE

Résumé—On présente une analyse de résolution du probléme inverse de rayonnement par une technique
Monte Carlo. Pour un milieu planaire non homogéne. le profil de 'albedo est obtenu par 'analyse inverse.
Pour des milieux homogénes, diffusant anisotropiquement, 'albedo et le facteur d"asymétrie se recouvrent.
On utilise une approximation pour fonction échelon pour tenir compte de la diffusion anisotrope dans le
milieu. Les limites de confiance dans I'estimation des parameétres sont évaluées. Les résultats montrent que
les propriétés du milieu peuvent étre retrouvées avec une grande précision méme s'il y a 10% d’erreur dans
les données d'entrée. Le principal avantage de la méthode Monte Carlo est qu'une solution unique directe
fournit les coefficients d'un polyndme a multivariable pour chaque ensemble de données, qui sont ensuite
utilisés pour obtenir les propriétés du milieu par une technique non linéaire de minimisation par moindres
carrés.

LOSUNG DES INVERSEN STRAHLUNGSPROBLEMS FUR INHOMOGENE UND
ANISOTROP STREUENDE MEDIEN MIT HILFE DER MONTE-CARLO-METHODE

Zusammenfassung—Fir die Losung des inversen Strahlungsproblems wird unter Verwendung der Monte-
Carlo-Methode ein Ansatz vorgestellt. Die inverse Berechnung ergibt fiir inhomogene ebene Medien das
Profil des Albedo durch Einfachstrahiung. Fiir homogene, anisotrop streuende Medien werden das Einfach-
Streuungsaibedo und der Asymmetrie-Faktor angegeben. Die anisotrope Streuung in Medien wird mit Hilfe
einer Sprungfunktion angenéhert. Fehler in den Eingabedaten verursachen eine bestimmte Unsicherheit bei
den berechneten Parametern—deren Vertrauensgrenzen werden berechnet. Die Ergebnisse zeigen, daB
die Eigenschaften des Mediums mit hoher Genauigkeit ermittelt werden kénnen, sogar im Falle cines
zehnprozentigen Fehlers bei den Eingabedaten. Der Hauptvorteil des Monte-Carlo-Verfahrens ist, daf}
eine einzige direkte Losung die Koeflizienten eines Polynoms mit mehreren Variablen fiir jeden Datensatz
hervorbringt. Diese werden dann benutzt, um mit Hilfe der Nichtlinearen Regression die Eigenschaften
des Mediums zu berechnen.

PEWIEHHUE OBPATHOM 3AJJAYM M3JIVHMEHUS 19 HEOQHOPOAHBIX U
AHHM3OTPOITHO PACCEHBAIOMWX CPEA METOOM MOHTE KAPJIO

Amporsums—IIpoBenen aHanM3 pelieHus oGpaTHOH sajauu m3nyweHus Merogom Monre Kapno. C
TIOMOIILIO OOPATHOTO aHAJIH3A NONYHYeH MPOGHIL eARHHYHOTO AILGENO0 PACCESHMS IUIA HEOAHOPOAHBIX
NJIOCKHX cpel. JAna OHOPOMHBIX, AHH3OTPONHO PacCEHBAIOLIMX CPell ONPeae/eHb! eMMHUYHBIR ansbeno
paccesnns B xoxpummenT acummerprn. C Ienbio y4eTa AHM3OTPONHOIO PACCESHHS Cpedbl HCIOJNb-
ayerca npuOimkense cTynmenuatoif azosolt dysxumu. ITomydeHa ouemka IpaHHIE! QOCTOBEPHOCTH
ONpefie/ICHHS NAPAMETPOB NPH PAMIMYHBIX MOTPEINHOCTAX BO BXOAHBIX NAHHBIX. PeayabTarTt noxassi-
BAIOT, YTO CBOHCTBA CPeibl MOTYT GBITh ONpEmeneHs! ¢ BBICOKOH TOMHOCTHIO Aaxe mpH 10%-noi mor-
PEIIHOCTH BO BXCAHBIX AaHHBIX. OCHOBHOE NpeHMyIUecTBO MeToga Monte Kapio coctour B oM, 410
€IHHAYHOE MPSMOE pellieHAe NO3BOJACT NOJYYHTH KOI(MPHIMEHTH NOMMHOMA CO MHOTHMH N¢peMeEH-
HBIMA JUISl KaXI0H CEPHH 5KCIIEPHMECHTAJIBHBIX JaHHBIX, KOTOPBIE 3aTeM HCIONB3YIOTCA LIS onpenene-
HHA CBOMCTB Cpe/bl HEMMHCHHBIM METOI0M MHHHMH3ALHH HANMEHBILIHX KBaIPaTOB.



